Parallelization of Image Segmentation Algorithms
نویسنده
چکیده
With the rapid developments of higher resolution imaging systems, larger image data are produced. To process the increasing image data with conventional methods, the processing time increases tremendously. Image segmentation is one of the many image processing algorithms, and it is widely used in medical imaging (i.e. find tumor in MRI), robotic vision (i.e. vision-based navigation), and face recognition. New faster image processing techniques are needed to keep up with the ever increasing image data size. This paper investigates the parallelization of image segmentation techniques: Watershed Transform and K-Means Clustering algorithms. Lastly, K-Means Clustering is combined with Watershed Transform to address the over-segmentation issue of the Watershed algorithm.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملMinimizing Loss of Information at Competitive PLIP Algorithms for Image Segmentation with Noisy Back Ground
In this paper, two training systems for selecting PLIP parameters have been demonstrated. The first compares the MSE of a high precision result to that of a lower precision approximation in order to minimize loss of information. The second uses EMEE scores to maximize visual appeal and further reduce information loss. It was shown that, in the general case of basic addition, subtraction, or mul...
متن کاملکاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کامل